3D models related to the publication: A heavyweight early whale pushes the boundaries of vertebrate morphology

Giovanni Bianucci1, Olivier Lambert2, Mario Urbina3, Marco Merella1, Alberto Collareta1, Florent Goussard4, Rebecca Bennion2,5, Rodolfo Salas-Gismondi3,6, Aldo Benites-Palomino7,8, Klaas Post8, Christian de Muizon4, Giulia Bosio9, Claudio Di Celma10, Elisa Malinverno6, Pietro Paolo Pierantoni10, Igor Maria Villa11, Eli Amson12*

1 Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy, 56126
2 D.O. Terre et Histoire de la Vie, Institut royal des Sciences naturelles de Belgique, Brussels, Belgium, 1000
3 Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Urbanismo Nacional Mayor de San Marcos, Lima, Peru
4 CR2P (CNRS, MNHN, Sorbonne Université), Département Origines et Evolution, Muséum national d’Histoire naturelle, Paris, France, 75231
5 Evolution & Diversity Dynamics Lab, UR Geology, Université de Liège, Liège, Belgium, 4000
6 Facultad de Ciencias y Filosofía/Centro de Investigación para el Desarrollo Integral y Sostenible, Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Perú, 15102
7 Department of Paleontology, University of Zürich, Zürich, Switzerland, 8006
8 Natuurhistorisch Museum Rotterdam, Rotterdam, The Netherlands, 3001
9 Dipartimento di Scienze dell’Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milano, Italy, 20126
10 School of Science and Technology, University of Camerino, Camerino, Italy, 62032
11 Institut für Geologie, Universität Bern, Bern, Switzerland, 3012
12 Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany, 70191
*Corresponding author: eli.amson@smns-bw.de

Abstract
The present 3D Dataset contains the 3D models analyzed in Bianucci et al. 2023, A heavyweight early whale pushes the boundaries of vertebrate morphology, Nature. These include bones of the holotype of new species Perucetus colossus (MUSM 3248), as well as the articulated skeleton of Cynthiacetus peruvianus (holotype, MNHN.F.PRU10). The latter was used to estimate the total skeleton volume of P. colossus.

Keywords: Archaeoceti, Basilosauridae, bone mass increase, Eocene, pachyosteosclerosis

Submitted: 2023-05-04, published online: 2023-08-04. https://doi.org/10.18563/journal.m3.187

INTRODUCTION

We describe a new species of basilosaurid whale from the Yumaqe member of the Paracas Formation (late Eocene, East Pisco Basin, Peru). It is known from one partial skeleton, comprising 13 vertebrae, four ribs and the right innominate (see Table 1 and Fig.1A-C). We provide textured surface models for all the elements (except three less well-preserved ribs). To estimate the new species’ total skeletal volume, we used a surface model of the most complete basilosaurid, the holotype of Cynthiacetus peruvianus (MNHN.F.PRU10, Otuma Formation, latest Eocene, East Pisco Basin; Martínez-Cáceres, Lambert, and Muizon 2017; Fig.1D). The latter was modified (with Blender 3.0.1 to 1. fit the dimensions of the new species; and 2. make additional estimations editing the modified model to match the skeletal composition of other well-known basilosaurids.

METHODS

The specimens were surface scanned: textured models of the vertebrae of Perucetus colossus (MUSM 3248) were acquired with a SHINING EinScan Pro HD, and the rib and innominate were scanned with an Artec Eva scanner; the skeleton of Cynthiacetus peruvianus (holotype, MNHN.F.PRU10) was also digitized with an Artec Eva scanner. Models were simplified for exportation with Meshlab (quadratic edge collapse decimation; Cignoni et al., 2008). Rendering of the models was done with Blender in orthographic view (Fig. 1). For the model of the specimen of C. peruvianus, which is mounted and on public display, a number of technical concessions had to be made to achieve the final results. First, areas hidden by the supporting structure and other surfaces not accessible to the scanner (cervical vertebrae too tightly packed, articular surfaces of the centra, neural canal of the vertebrae, internal portions of the skull) were reconstructed using the mesh filler tool of Geomagic Wrap 2021 taking into account the curvature of the surrounding mesh. Furthermore, due to the pedestal of the specimen, its position in the gallery and the thinness of certain elements, the appendicular skeleton was reconstructed in part by symmetrizing the best reconstructed right or left portions (depending on the situation). Consequently, if the final 3D model is considered to be faithful to the original specimen, it may not be relevant for morphometric analyses or any other approach requiring too much geometric precision.

ACKNOWLEDGEMENTS

Guillaume Billet (curator, MNHN, Paris) is warmly thanked for helping with the management of the data related to the holotype of Cynthiacetus peruvianus, a specimen under his care. Grant sponsor: Stan Wood Award from the Palaeontological Association. Grant sponsor: University of Pisa. Grant number:
Figure 1. Overview of the surface models. A-C. Holotype of *Perucetus colossus* (MUSM 3248) vertebrae (A) in dorsal (top), ventral (middle), and right lateral (bottom) views; right rib (B) in anterior view; right innominate (C) in lateral view. D. Holotype of *Cynthiacetus peruvianus* (MNHN.F.PRU10) in antero-dorso-left lateral view; the three arrows each represents 1 m.
<table>
<thead>
<tr>
<th>Inv nr.</th>
<th>Taxon</th>
<th>Description</th>
<th>Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSM3248</td>
<td>Perucetus colossus</td>
<td>Thirteen vertebrae, rib, and innominate of Perucetus colossus (holotype).</td>
<td>MUSM, Lima</td>
</tr>
<tr>
<td>MNHN.F.PRU10</td>
<td>Cynthiacetus peruvianus</td>
<td>Articulated skeleton of the holotype of Cynthiacetus peruvianus</td>
<td>MNHN, Paris</td>
</tr>
</tbody>
</table>

Table 1. List of models. MNHN: Muséum national d’Histoire naturelle (Paris, France); MUSM: Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (Lima, Peru).

BIBLIOGRAPHY

Martínez-Cáceres, M., Lambert, O., and Muizon. C. de, 2017. The anatomy and phylogenetic affinities of *Cynthiacetus peruvianus*, a large *Dorudon*-like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru. *Geodiversitas* 39, 7-163. https://doi.org/10.5252/g2017n1a1