Current issue


2024-12
Volume 10, issue 04
<< prev. next >>
ISSN: 2274-0422

Article Management

You must log in to submit or manage articles.

You do not have an account yet ? Sign up.

Most downloaded articles (last 90 days)


Page 2 of 10, showing 20 record(s) out of 185 total

3D models related to the publication: Comparative anatomy of the vocal apparatus in bats and implication for the diversity of laryngeal echolocation.
Nicolas L. M. Brualla Logo, Laura A. B. Wilson Logo, Vuong T. Tu Logo, Richard . Carter Logo and Daisuke Koyabu Logo
Published online: 28/06/2024

Keywords: Chiroptera; larynx; mammalian nasopharyngeal morphology; vocal tract; x-ray microtomography

https://doi.org/10.18563/journal.m3.219

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Brualla et al., 2024: Comparative anatomy of the vocal apparatus in bats and implication for the diversity of laryngeal echolocation. Zoological Journal of the Linnean Society, vol. zlad180. (https://doi.org/10.1093/zoolinnean/zlad180). Bat larynges are understudied in the previous anatomical studies. The description and comparison of the different morphological traits might provide important proxies to investigate the evolutionary origin of laryngeal echolocation in bats. 

  Specimens
 
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
A 3D reconstruction of the skull of the West Indian Ocean coelacanth Latimeria chalumnae
 
Luigi Manuelli, Raphael Covain Logo and Lionel Cavin Logo
Published online: 14/09/2023

Keywords: coelacanth; Computed Tomography; Cranial osteology; Latimeria

https://doi.org/10.18563/journal.m3.211

  Abstract

    We provide a 3D reconstruction of the skull of Latimeria chalumnae that can be easily accessed and visualized for a better understanding of its cranial anatomy. Different skeletal elements are saved as separate PLY files that can be combined to visualize the entire skull or isolated to virtually dissect the skull. We included some guidelines for a fast and easy visualization of the 3D skull. 

  Specimens
 
  M3 article infos

Published in Volume 09, issue 03 (2023)

PDF
3D models related to the publication: Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield.
Mathilde Barthe Logo, Lionel Hautier Logo, Guillaume Billet Logo, Anderson Feijó Logo, Benoit Moison Logo, Benoît de Thoisy Logo, François Catzeflis Logo and Frédéric Delsuc Logo
Published online: 28/06/2024

Keywords: carapace; Dasypus guianensis; holotype; skeleton; Xenarthra

https://doi.org/10.18563/journal.m3.204

  Abstract

    This contribution contains 3D models of the holotype of a new species of long-nosed armadillos, the Guianan long-nosed armadillo (Dasypus guianensis) described in the following publication: Barthe M., Rancilhac L., Arteaga M. C., Feijó A., Tilak M.-K., Justy F., Loughry W. J., McDonough C. M., de Thoisy B., Catzeflis F., Billet G., Hautier L., Nabholz B., and Delsuc F. 2024. Exon capture museomics deciphers the nine-banded armadillo species complex and identifies a new species endemic to the Guiana Shield. Systematic Biology, syae027. https://doi.org/10.1093/sysbio/syae027
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
3D models related to the publication: A new primate community from the earliest Oligocene of the Atlantic margin of Northwest Africa: Systematic, paleobiogeographic and paleoenvironmental implications
Laurent Marivaux Logo, Anne-Lise Charruault Logo and Mouloud Benammi Logo
Published online: 20/06/2024

Keywords: Africa; Anthropoidea; Atlantic Sahara; Eocene/Oligocene transition; Strepsirrhini

https://doi.org/10.18563/journal.m3.208

  Abstract

    This contribution contains the three-dimensional digital models of the dental fossil material of anthropoid and strepsirrhine primates, discovered in Lower Oligocene detrital deposits outcropping in the Porto Rico and El Argoub areas, east of the Dakhla peninsula region (Atlantic Sahara; in the south of Morocco, near the northern border of Mauritania). These fossils were described, figured and discussed in the following publication: Marivaux et al. (2024), A new primate community from the earliest Oligocene of the Atlantic margin of Northwest Africa: Systematic, paleobiogeographic and paleoenvironmental implications. Journal of Human Evolution. https://doi.org/10.1016/j.jhevol.2024.103548 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
Digital restoration of the snout of Khirtharia inflata (Raoellidae,  Artiodactyla) from the middle Eocene of northwest Himalaya
Maëva J. Orliac Logo, Mohd Waqas Logo, Rajendra Rana Logo and Thierry Smith Logo
Published online: 20/06/2024

Keywords: Cetacea; incisor; India; raoellid

https://doi.org/10.18563/journal.m3.224

  Abstract

    In this work, we digitally restore the snout of the raoellide Khirtharia inflata from the Kalakot area (Rajouri District, Jammu & Kashmir, India). Raoellids are small, semiaquatic ungulates closely related to cetaceans. The specimen is fairly complete and preserves left and right maxillaries, left premaxillary, and part of the anterior and jugal dentition. The digital restoration of this quite complete but deformed specimen of Khirtharia inflata is a welcome addition to the data available for raoellids and will be used to further the understanding of the origins of cetaceans.
      

  Specimens
 
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
3D model related to the publication: The largest freshwater odontocete: a South Asian river dolphin relative from the Proto-Amazonia
Aldo Benites-Palomino Logo, Gabriel Aguirre-Fernández Logo, Patrice Baby, Diana Ochoa Logo, Ali Altamirano-Sierra Logo, John J. Flynn Logo, Marcelo R. Sánchez-Villagra Logo, Julia Tejeda Logo, Christian de Muizon Logo and Rodolfo Salas-Gismondi Logo
Published online: 21/03/2024

Keywords: Miocene; Odontoceti; Platanistidae; River dolphin

https://doi.org/10.18563/journal.m3.221

  Abstract

    The present 3D Dataset contains the 3D model analyzed in The largest freshwater odontocete: a South Asian river dolphin relative from the Proto-Amazonia. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 01 (2024)

PDF
A 3D geometric morphometric dataset quantifying skeletal variation in birds
Alexander Bjarnason Logo and Roger Benson Logo
Published online: 09/02/2021

Keywords: birds; geometric morphometrics; macroevolution; Morphology; skeleton

https://doi.org/10.18563/journal.m3.125

  Abstract

    Macroevolution is integral to understanding the patterns of the diversification of life. As the life sciences increasingly use big data approaches, large multivariate datasets are required to test fundamental macroevolutionary hypotheses. In vertebrate evolution, large datasets have been created to quantify morphological variation, largely focusing on particular areas of the skeleton. We provide a landmarking protocol to quantify morphological variation in skeletal elements across the head, trunk, hindlimb and forelimb using 3-dimensional landmarks and semilandmarks, and present a large pan-skeletal database of bird morphology for 149 taxa across avian phylogeny using CT scan data. This large collection of 3D models and geometric morphometric data is open access and can be used in the future for new research, teaching and outreach. The 3D models and CT scans of the 149 specimens related to this project can be downloaded at MorphoSource (https://www.morphosource.org/projects/00000C420

  Specimens
 
  M3 article infos

Published in Volume 07, issue 01 (2021)

PDF
S.I. Data
3D models related to the publication: The pharynx of the iconic stem-group chondrichthyan Acanthodes Agassiz, 1833 revisited with micro computed tomography.
Richard Dearden Logo, Anthony Herrel Logo and Alan Pradel Logo
Published online: 25/06/2024

Keywords: acanthodian; branchial skeleton; chondrichthyan; Permian; pharynx

https://doi.org/10.18563/journal.m3.226

  Abstract

    This contribution contains 3D models of the cranial endoskeleton of three specimens of the Permian ‘acanthodian’ stem-group chondrichthyan (cartilaginous fish) Acanthodes confusus, obtained using computed tomography. These datasets were described and analyzed in Dearden et al. (2024) “3D models related to the publication: The pharynx of the iconic stem-group chondrichthyan Acanthodes Agassiz, 1833 revisited with micro computed tomography.” Zoological Journal of the Linnean Society 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 02 (2024)

PDF
3D models related to the publication: A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation
Jacob Maugoust Logo and Maëva J. Orliac Logo
Published online: 19/10/2023

Keywords: Bony labyrinth; Chiroptera; Cranium; Eocene; Paleontology

https://doi.org/10.18563/journal.m3.217

  Abstract

    The present 3D Dataset contains 3D models of the cranium surface and of the bony labyrinth endocast of the stem bat Vielasia sigei. They are used by (Hand et al., 2023) to explore the phylogenetic position of this species, to infer its laryngeal echolocating capabilities, and to eventually discuss chiropteran evolution before the crown clade diversification. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 04 (2023)

PDF
3D models related to the publication: Evidence for high-performance suction feeding in the Pennsylvanian stem-group holocephalan Iniopera.
Richard Dearden Logo, Anthony Herrel Logo and Alan Pradel Logo
Published online: 18/01/2023

Keywords: chondrichthyan; holocephalan; iniopterygian; Pennsylvanian; suction feeding

https://doi.org/10.18563/journal.m3.177

  Abstract

    The present 3D Dataset contains 3D models of the cranial, visceral, and pectoral endoskeleton of Iniopera, an iniopterygian stem-group holocephalan from the Pennsylvanian of the USA. These data formed the basis for the analyses carried out in Dearden et al. (2023) “Evidence for high-performance suction feeding in the Pennsylvanian stem-group holocephalan Iniopera” PNAS. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 01 (2023)

PDF
3D models related to the publication: The endocranial cast of Indohyus (Artiodactyla, Raoellidae): the origin of the cetacean brain
 
Maëva J. Orliac Logo and J. G. M. Thewissen Logo
Published online: 27/04/2021

Keywords: brain; Cetacea; CT scan; endocast; Eocene

https://doi.org/10.18563/journal.m3.137

  Abstract

    The present 3D Dataset contains the 3D models of the endocranial cast of two specimens of Indohyus indirae described in the article entitled “The endocranial cast of Indohyus (Artiodactyla, Raoellidae): the origin of the cetacean brain” (Orliac and Thewissen, 2021). They represent the cast of the main cavity of the braincase as well as associated intraosseous sinuses.
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 07, issue 02 (2021)

PDF
3D models related to the publication: Inner ear morphology in wild vs laboratory house mice
Sabrina Renaud Logo, Léa Amar, Caroline Romestaing Logo, Jean-Pierre Quéré and Renaud Lebrun Logo
Published online: 15/01/2024

Keywords: fuctuating asymmetry; geometric morphometrics; intraspecific variation; Mus musculus domesticus; semicircular canals

https://doi.org/10.18563/journal.m3.220

  Abstract

    This contribution contains 3D models of left and right house mouse (Mus musculus domesticus) inner ears analyzed in Renaud et al. (2024). The studied mice belong to four groups: wild-trapped mice, wild-derived lab offspring, a typical laboratory strain (Swiss) and hybrids between wild-derived and Swiss mice. They have been analyzed to assess the impact of mobility reduction on inner ear morphology, including patterns of divergence, levels of inter-individual variance (disparity) and intra-individual variance (fluctuating asymmetry) 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 01 (2024)

PDF
3D model related to the publication: Cranial Anatomy of Indohyus indirae (Raoellidae), an artiodactyl from the Eocene of India, and its implications for raoellid biology
Sonam Patel, Avinash C. Nanda, Maëva J. Orliac Logo and J. G. M. Thewissen Logo
Published online: 25/09/2024

Keywords: Artiodactyla; Cetacea; skull anatomy

https://doi.org/10.18563/journal.m3.216

  Abstract

    The present 3D Dataset contains the 3D model of the skull of the raoellid Indohyus indirae described in Patel et al. 2024.
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 03 (2024)

PDF
3D models related to the publication: Shape diversity in conodont elements, a quantitative study using 3D topography.
Alexandre Assemat Logo, Ghislain Thiery Logo, Thibaud Lieffroy Logo and Catherine Girard
Published online: 17/01/2024

Keywords: Conodonts; Doolkit; Morphofunction; Scanning resolution; Topography

https://doi.org/10.18563/journal.m3.223

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Assemat et al. 2023: Shape diversity in conodont elements, a quantitative study using 3D topography. Marine Micropaleontology 184. https://doi.org/10.1016/j.marmicro.2023.102292

    P1 elements represent dental components of the conodont apparatus that perform the final stage of food processing before ingestion. Consequently, quantifying the shape of P1 elements across the topographic indices of different conodont species becomes crucial for deciphering the diversity in feeding behavior within this group. 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 10, issue 01 (2024)

PDF
3D models related to the publication: Cranial anatomy of Hypisodus minimus (Artiodactyla: Ruminantia) from the Oligocene Brule Formation of North America
Hannah Keppeler, Julia A. Schultz Logo, Irina Ruf Logo and Thomas Martin Logo
Published online: 09/03/2023

Keywords: 3D reconstruction; CT data set; Hypertragulidae; skull

https://doi.org/10.18563/journal.m3.176

  Abstract

    The present 3D Dataset contains the 3D models analyzed in Keppeler, H., Schultz, J. A., Ruf, I., & Martin, T., 2023. Cranial anatomy of Hypisodus minimus (Artiodactyla: Ruminantia) from the Oligocene Brule Formation of North America. Palaeontographica Abteilung A. 

  Specimens

    Hypisodus minimus SMNK-PAL 27212 View specimen

    M3#1031

    CT image stack of a skull of Hypisodus minimus. Also includes a lumbar vertebra and a probable proximal phalanx of digit III or IV.

    Type: "3D_CT"

    doi: 10.18563/m3.sf.1031   state:published




    Download CT data

    M3#1036

    3D surface models of a skull of Hypisodus minimus (SMNK-PAL27212). The data includes a surface model for: basisphenoid, tympanic bullae, ethmoid (lamina perpendicularis), frontals, jugal (left), jugal (right), lacrimals, lower dentition, mandibles, mastoid processes, maxillaries, maxilloturbinals, nasals, occipital, palatine, parietals, petrosals, presphenoid, squamosals, turbinates, upper dentition, and the vomer.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.1036   state:published




    Download 3D surface file

    Hypisodus minimus SMNK-PAL 27213 View specimen

    M3#1033

    CT image stack of a skull of Hypisodus minimus. Also shows numerous postcranial material including an atlas articulated with the occipital bone, the distal part of a left humerus articulated to radius and ulna, a part of a femur, a part of a tibia and fibula, unidentifiable tarsal bones, parts of the metatarsals II, III, IV and V and their phalanges, a proximal phalanx of digit III or IV, a middle phalanx of digit III or IV, a possible patella and calcaneus, as well as numerous unidentifiable broken bony fragments.

    Type: "3D_CT"

    doi: 10.18563/m3.sf.1033   state:published




    Download CT data

    M3#1035

    3D surface models of a skull of Hypisodus minimus (SMNK-PAL27213). The data includes a surface model for: atlas, basisphenoid, tympanic bullae, nasals, occipital, the petrosals, and the inner ear.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.1035   state:published




    Download 3D surface file


 
  See original publication
  M3 article infos

Published in Volume 09, issue 01 (2023)

PDF
A surface scan of the "Tübingen Steinkern", Holotype of Proganochelys quenstedtii (Testudinata), with some historical remarks.
Ingmar Werneburg Logo, Christina Kyriakouli Logo and Tomasz Szczygielski Logo
Published online: 08/08/2022

Keywords: Friedrich August Quenstedt; history of science; Holotype; steinkern; surface scan

https://doi.org/10.18563/journal.m3.168

  Abstract

    Turtles are one of the most impressive vertebrates. Much of the body is either hidden in a shell or can be drawn into it. Turtles impress with their individual longevity and their often peaceful disposition. Also, with their resilience, they have survived all extinction events since their emergence in the Late Triassic. Today's diversity of shapes is impressive and ranges from the large and high domed Galapagos turtles to the hamster-sized flat pancake turtles. The holotype of one of the oldest fossil turtles, Proganochelys quenstedtii, is housed in the paleontological collection in Tübingen/Germany. Since its discovery some years before 1873, P. quenstedtii has represented the 'prototype' of the turtle and has had an eventful scientific history. It was found in Neuenhaus (Häfner-Neuhausen in Schönbuch forest), Baden-Württemberg, Germany, and stems from Löwenstein-Formation (Weißer Keupersandstein), Late Triassic. The current catalogue number is GPIT-PV-30000. The specimen is listed in the historical inventory “Tübinger Petrefaktenverzeichnis 1841 bis 1896, [folio 326v.]“, as “[catalogue number: PV]16549, Schildkröte Weiser Keupersandstein Hafnerhausen” [turtle from White Keuper Sandstone]. Another, more recent synonym is “GPIT/RE/9396”. The same specimen was presented as uncatalogued by Gaffney (1990). Here we provide a surface scan of the steinkern for easier access of this famous specimen to the scientific community.
      

  Specimens
 
  M3 article infos

Published in Volume 08, issue 03 (2022)

PDF
3D model related to the publication: Cranial morphology and phylogenetic relationships of Amynodontidae Scott & Osborn, 1883 (Perissodactyla, Rhinocerotoidea)
Léa Veine-Tonizzo Logo, Jérémy Tissier Logo, Maia Bukhsianidze, Davit Vasilyan Logo and Damien Becker Logo
Published online: 20/03/2023

Keywords: Amynodontidae; Eocene; Oligocene; phylogeny; Rhinocerotoidea

https://doi.org/10.18563/journal.m3.139

  Abstract

    The present 3D Dataset contains the 3D model of a specimen of Metamynodon planifrons (UNISTRA.2015.0.1106) described and figured in: Veine-Tonizzo, L., Tissier, J., Bukhsianidze, M., Vasilyan, D., Becker, D., 2023, Cranial morphology and phylogenetic relationships of Amynodontidae Scott & Osborn, 1883 (Perissodactyla, Rhinocerotoidea). 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 01 (2023)

PDF
3D models related to the publication: An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico
Laurent Marivaux Logo, Jorge Velez-Juarbe Logo and Pierre-Olivier Antoine Logo
Published online: 16/07/2021

Keywords: Caribbean islands; Geomorpha; Paleobiogeography; Paleogene; Rodentia

https://doi.org/10.18563/journal.m3.128

  Abstract

    This contribution provides the raw files for the μCT-scan data and renderings of the three-dimensional digital models of two fossil teeth of a geomyin geomorph rodent (Caribeomys merzeraudi), discovered from lower Oligocene deposits of Puerto Rico, San Sebastian Formation (locality LACM Loc. 8060). These fossils were described, figured and discussed in the following publication: Marivaux et al. (2021), An unpredicted ancient colonization of the West Indies by North American rodents: dental evidence of a geomorph from the early Oligocene of Puerto Rico. Papers in Palaeontology. https://doi.org/10.1002/spp2.1388 

  Specimens

    Caribeomys merzeraudi LACM 162478 View specimen

    M3#712

    Right lower dp4: isolated deciduous premolar. The specimen was scanned with a resolution of 5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This isolated tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.712   state:published




    Download 3D surface file

    M3#714

    5µm µCT data set . Right lower dp4: isolated deciduous premolar. The specimen was scanned with a resolution of 5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France).

    Type: "3D_CT"

    doi: 10.18563/m3.sf.714   state:published




    Download CT data

    Caribeomys merzeraudi LACM 162449 View specimen

    M3#713

    Right lower molar (m1 or m2). The specimen was scanned with a resolution of 4.5 µm using a μ-CT-scanning station EasyTom 150 / Rx Solutions (Montpellier RIO Imaging, ISE-M, Montpellier, France). AVIZO 7.1 (Visualization Sciences Group) software was used for visualization, segmentation, and 3D rendering. This isolated tooth was prepared within a “labelfield” module of AVIZO, using the segmentation threshold selection tool.

    Type: "3D_surfaces"

    doi: 10.18563/m3.sf.713   state:published




    Download 3D surface file

    M3#715

    µCT data at 4.5µm

    Type: "3D_CT"

    doi: 10.18563/m3.sf.715   state:published




    Download CT data


 
  See original publication
  M3 article infos

Published in Volume 07, issue 03 (2021)

PDF
3D models related to the publication: “Molar wear in house mice: insight into diet preferences at an ecological time scale?”
 
Sabrina Renaud Logo, Ronan Ledevin Logo, Caroline Romestaing Logo and Emilie A. Hardouin Logo
Published online: 28/07/2023

Keywords: dental functional morphology; mastication; Mus musculus domesticus; Sub-Antarctic environment

https://doi.org/10.18563/journal.m3.200

  Abstract

    This contribution contains 3D models of upper molar rows of house mice (Mus musculus domesticus) belonging to Western European commensal and Sub-Antarctic feral populations. These two groups are characterized by different patterns of wear and alignment of the three molars along the row, related to contrasted masticatory demand in relation with their diet. These models are analyzed in the following publication: Renaud et al 2023, “Molar wear in house mice, insight into diet preferences at an ecological time scale?”, https://doi.org/10.1093/biolinnean/blad091
      

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 03 (2023)

PDF
3D models related to the publication: 3D Finite Element Analysis and Geometric Morphometrics of Sloths (Xenarthra, Folivora) Mandibles Show Insights on the Dietary Specializations of Fossil Taxa
Luciano Varela Logo and Pablo S. Tambusso Logo
Published online: 10/06/2023

Keywords: Ground Sloths; Mandibles; Photogrammetry; Quaternary; South America

https://doi.org/10.18563/journal.m3.199

  Abstract

    The present 3D Dataset contains the 3D models analyzed in 3D Finite Element Analysis and Geometric Morphometrics of Sloths (Xenarthra, Folivora) Mandibles Show Insights on the Dietary Specializations of Fossil Taxa. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2023.104445 

  Specimens
 
  See original publication
  M3 article infos

Published in Volume 09, issue 02 (2023)

PDF

Page 2 of 10, showing 20 record(s) out of 185 total